ItemDrops Plugin - Recommended Improvements
Living document for ongoing enhancements and optimizations
๐ Overview
This document tracks recommended improvements for the ItemDrops plugin, organized by priority and implementation complexity. Items are marked with their current status and implementation notes.
๐๏ธ Architecture & Code Quality
[ ] Interface Segregation
Priority: High | Status: Pending | Complexity: Medium
Current Issue: IDropTable has too many responsibilities (data access, validation, generation)
Recommended Solution:
// Split into focused interfaces
public interface IDropTable
{
IReadOnlyList<IDrop> Drops { get; }
int MinDrops { get; }
int MaxDrops { get; }
float DropChance { get; }
}
public interface IDropTableValidator
{
DropTableValidationResult Validate();
}
public interface IDropGenerator
{
IEnumerable<DropResult> GenerateDrops(LootContext context);
}
Benefits:
- Better separation of concerns
- Easier unit testing
- More focused interfaces
- Future extensibility
[ ] Factory Pattern for Drop Creation
Priority: High | Status: Pending | Complexity: Low
Current Issue: Drop creation logic scattered across multiple classes
Recommended Solution:
public static class DropFactory
{
public static IDrop CreateItemDrop(string itemId, float weight, ItemRarity rarity = ItemRarity.Common)
public static IDropCondition CreateCondition(string type, params object[] parameters)
public static ILootModifier CreateModifier(string type, params object[] parameters)
}
Benefits:
- Centralized creation logic
- Easier configuration management
- Consistent object initialization
- Better error handling
[ ] Enhanced Builder Pattern
Priority: Medium | Status: Pending | Complexity: Medium
Current Issue: DropTableBuilder could be more expressive for common scenarios
Recommended Solution:
public class DropTableBuilder
{
public DropTableBuilder WithCommonDrops(params string[] itemIds)
public DropTableBuilder WithRareDrops(float chance, params string[] itemIds)
public DropTableBuilder WithLevelScaling(int minLevel, int maxLevel)
public DropTableBuilder WithLuckScaling(float baseLuck)
}
Benefits:
- More expressive API
- Reduced boilerplate
- Common patterns built-in
- Better readability
โก Performance Optimizations
[ ] Object Pooling for DropResults
Priority: High | Status: Pending | Complexity: Medium
Current Issue: Frequent allocation of DropResult objects in high-drop scenarios
Recommended Solution:
public class DropResultPool
{
private readonly ConcurrentQueue<DropResult> _pool = new();
public DropResult Get() => _pool.TryDequeue(out var result) ? result : new DropResult();
public void Return(DropResult result) => _pool.Enqueue(result);
}
Benefits:
- Reduced GC pressure
- Better performance in high-frequency scenarios
- Memory efficiency
Implementation Notes:
- Thread-safe for concurrent access
- Automatic pool growth
- Configurable maximum pool size
[ ] Lazy Loading for Drop Tables
Priority: Medium | Status: Pending | Complexity: Low
Current Issue: All drop tables loaded immediately, even unused ones
Recommended Solution:
public class LazyDropTable : IDropTable
{
private readonly Func<DropTable> _factory;
private DropTable? _innerTable;
public IReadOnlyList<IDrop> Drops => GetTable().Drops;
private DropTable GetTable() => _innerTable ??= _factory();
}
Benefits:
- Faster startup times
- Reduced memory usage
- On-demand initialization
[ ] Caching Strategy
Priority: Medium | Status: Pending | Complexity: High
Current Issue: Repeated calculations for identical drop scenarios
Recommended Solution:
public class CachedDropCalculator : DropCalculator
{
private readonly LRUCache<(string, int, float), List<DropResult>> _cache;
public override List<DropResult> GenerateDrops(IDropTable table, LootContext context)
{
var key = (GetTableHash(table), context.Level, context.LuckModifier);
return _cache.GetOrAdd(key, () => base.GenerateDrops(table, context));
}
}
Benefits:
- Significant performance gains for repeated scenarios
- Configurable cache size
- Thread-safe implementation
Implementation Notes:
- Need robust hash function for drop tables
- Cache invalidation strategy
- Memory usage monitoring
๐ก๏ธ Error Handling & Validation
[ ] Result Pattern for Operations
Priority: High | Status: Pending | Complexity: Medium
Current Issue: Error handling inconsistent across the codebase
Recommended Solution:
public class DropGenerationResult
{
public bool Success { get; init; }
public IReadOnlyList<DropResult> Drops { get; init; } = Array.Empty<DropResult>();
public IReadOnlyList<string> Errors { get; init; } = Array.Empty<string>();
public IReadOnlyList<string> Warnings { get; init; } = Array.Empty<string>();
}
Benefits:
- Consistent error handling
- Better debugging information
- Chainable operations
- Type-safe error reporting
[ ] Comprehensive Validation
Priority: High | Status: Pending | Complexity: Low
Current Issue: Validation logic scattered and incomplete
Recommended Solution:
public class DropTableValidator
{
public ValidationResult Validate(IDropTable table)
{
var result = new ValidationResult();
// Validate weights
if (table.Drops.Any(d => d.Weight <= 0))
result.AddError("All drops must have positive weight");
// Validate drop ranges
if (table.MinDrops > table.MaxDrops)
result.AddError("Min drops cannot exceed max drops");
return result;
}
}
Benefits:
- Centralized validation logic
- Consistent error messages
- Extensible validation rules
- Better debugging experience
๐งช Testing & Diagnostics
[ ] Test Data Factory
Priority: Medium | Status: Pending | Complexity: Low
Current Issue: Test setup code duplicated across test classes
Recommended Solution:
public static class DropTestDataFactory
{
public static IDropTable CreateBasicTable()
public static IDropTable CreateComplexTable()
public static LootContext CreateHighLevelContext()
public static LootContext CreateLowLuckContext()
}
Benefits:
- Reduced test code duplication
- Consistent test data
- Easier test maintenance
- Standardized test scenarios
[ ] Diagnostic Tools
Priority: Medium | Status: Pending | Complexity: Medium
Current Issue: Limited visibility into drop generation behavior
Recommended Solution:
public class DropTableDiagnostics
{
public DropStatistics GetDetailedStatistics(IDropTable table, int simulations = 10000)
public DropProbabilityMatrix GetProbabilityMatrix(IDropTable table)
public string GenerateReport(IDropTable table)
}
Benefits:
- Better debugging capabilities
- Performance analysis tools
- Statistical insights
- Exportable reports
โ๏ธ Configuration & Extensibility
[ ] Configuration System
Priority: Medium | Status: Pending | Complexity: Low
Current Issue: Hard-coded configuration values
Recommended Solution:
public class ItemDropsConfiguration
{
public int DefaultSimulations { get; set; } = 1000;
public bool EnableCaching { get; set; } = true;
public int CacheSize { get; set; } = 1000;
public LogLevel LogLevel { get; set; } = LogLevel.Warning;
}
Benefits:
- Runtime configuration
- Environment-specific settings
- Easier debugging
- Performance tuning
[ ] Plugin Architecture
Priority: Low | Status: Pending | Complexity: High
Current Issue: Limited extensibility points
Recommended Solution:
public interface IDropPlugin
{
string Name { get; }
void Initialize(IItemDropsContext context);
void RegisterDropTypes(IDropTypeRegistry registry);
}
Benefits:
- Third-party extensions
- Modular architecture
- Plugin ecosystem
- Custom drop types
๐ฎ Engine Integration Improvements
[ ] Godot Signal System
Priority: Medium | Status: Pending | Complexity: Low
Current Issue: Limited event handling in Godot integration
Recommended Solution:
// Add to ItemDropsBus
[Signal] public delegate void DropGeneratedEventHandler(string itemId, Vector2 position);
[Signal] public delegate void DropCollectedEventHandler(string itemId, Node collector);
[Signal] public delegate void DropTableValidatedEventHandler(string tableId, bool isValid);
Benefits:
- Godot-idiomatic event handling
- Better integration with Godot scene tree
- Visual scripting support
[ ] Unity Event System
Priority: Medium | Status: Pending | Complexity: Low
Current Issue: Limited event handling in Unity integration
Recommended Solution:
public static class ItemDropsEvents
{
public static UnityEvent<string, Vector3> OnDropGenerated = new();
public static UnityEvent<string, GameObject> OnDropCollected = new();
public static UnityEvent<string, bool> OnDropTableValidated = new();
}
Benefits:
- Unity-idiomatic event handling
- Inspector integration
- Visual scripting support
๐ Documentation & Examples
[ ] Sample Implementations
Priority: Low | Status: Pending | Complexity: Low
Current Issue: Limited examples for common use cases
Recommended Solution:
// Create example drop tables for common use cases
public static class CommonDropTables
{
public static IDropTable BasicEnemyDrops { get; }
public static IDropTable BossDrops { get; }
public static IDropTable TreasureChestDrops { get; }
}
Benefits:
- Quick start for developers
- Common patterns documented
- Reference implementations
- Best practices showcase
[ ] Integration Guides
Priority: Low | Status: Pending | Complexity: Low
Current Issue: Documentation could be more comprehensive
Recommended Tasks:
- Add comprehensive README with examples
- Create demo scenes for both Godot and Unity
- Add performance benchmarking tools
- Create video tutorials
Benefits:
- Better developer experience
- Faster onboarding
- Reduced support burden
- Community growth
๐ Implementation Priority
Phase 1 (High Priority - Next Sprint)
- Interface Segregation - Foundation for better architecture
- Result Pattern - Consistent error handling
- Object Pooling - Performance optimization
- Factory Pattern - Centralized creation logic
Phase 2 (Medium Priority - Following Sprints)
- Enhanced Validation - Better error prevention
- Diagnostic Tools - Debugging capabilities
- Configuration System - Runtime flexibility
- Signal/Event Systems - Engine integration
Phase 3 (Low Priority - Future Enhancements)
- Plugin Architecture - Extensibility
- Caching Strategy - Advanced performance
- Sample Implementations - Documentation
- Integration Guides - Developer experience
๐ Metrics & KPIs
Performance Targets
- Drop Generation: < 1ms for typical tables (10 drops)
- Memory Usage: < 10MB for 1000 drop tables
- Startup Time: < 100ms for plugin initialization
- Test Coverage: > 90% for Core library
Code Quality Targets
- Cyclomatic Complexity: < 10 per method
- Maintainability Index: > 80
- Technical Debt: < 1 day
- Documentation Coverage: > 80%
๐ Review Process
Monthly Review
- Assess implemented improvements
- Update priority based on feedback
- Add new improvement suggestions
- Review performance metrics
Quarterly Review
- Evaluate overall plugin health
- Plan major architectural changes
- Update roadmap based on user feedback
- Review community contributions
๐ Implementation Notes
General Guidelines
- Maintain POCS architecture principles
- Ensure backward compatibility where possible
- Add comprehensive tests for new features
- Update documentation for all changes
- Follow existing code style and patterns
Testing Requirements
- Unit tests for all new Core features
- Integration tests for engine-specific code
- Performance benchmarks for optimizations
- Compatibility tests for breaking changes
Documentation Requirements
- Update README for user-facing changes
- Add inline documentation for new APIs
- Create examples for complex features
- Update this improvements document
Last Updated: November 2025
Next Review: December 2025
Document Version: 1.0